설계된 생명


진화론은 돌연변이와 자연선택의 과정을 통해 무생물에서 출발하여 하등동물을 거쳐 고등동물까지 점진적인 변화를 거쳐 생물이 진화되어 왔다고 주장한다. 하지만 생물의 진화를 보여주는 화석상의 증거들은 없다. 생명체는 고도의 조직적인 정교함을 보여주는 유기체로서 너무도 복잡하지만 질서정연하며, 우연과 필연인 자연적인 원인으로 이루어졌다고 설명하기에는 너무나 불충분한 양상을 띠고 있다. 오히려 생명체의 고도의 조직적인 정교함들은 지적인 원인, 즉 지적설계를 필요로 한다는 사실을 우리에게 말해주고 있다. 아래에 몇 가지 일반인들도 이해하기 어렵지 않은 생물체의 구조와 기능의 몇 가지 예들은 규칙성과 조화 가운데 특정화된 복잡성을 보여줌으로써 생명체가 설계될 수 밖에 없는, 즉 지적행위자를 확인하는 일이 될 것이다.

성경은 생명의 근원이 피에 있다고 할 만큼 피의 중요성을 언급하고 있다. 피는 전체 몸무게의 약 8%로 성인에 있어서 4-6리터 정도 된다. 피의 구성원은 크게 물, 단백질, 각종 용해질로 이루어진 혈장(plasma)과 적혈구, 백혈구, 혈소판 등의 세포 성분(cell elements)으로 나누어지는데 혈장이 약 55%, 세포 성분이 약 45%를 차지하고 있다. 피는 생명 현상유지에 가장 중요한 역할을 하는데 첫째, 산소, 이산화탄소, 영양 물질, 호르몬 등을 몸의 구석구석으로 운반하는 역할과 둘째, 신체 내의 pH, 온도, 세포 내의 수분 조절을 하고, 마지막으로 각종 병균들의 침해를 막으며 면역의 중요한 역할을 담당한다.

이 중에서 몇 가지만 살펴보기로 하겠다. 우리의 생명을 유지하기 위한 신진대사를 하기 위해서 산소가 반드시 조직 세포로 공급되어야 하는데, 이 산소를 우리 몸의 구석구석까지 운반하는 역할을 하는 것이 바로 피 속의 적혈구(red blood cell)이다. 적혈구의 모양은 중간이 오목한 도너츠를 연상하면 되는데 산소 운반의 역할이 워낙 중요하기 때문에 적혈구 내의 대부분(약 33%)은 산소 운반 색소인 헤모글로빈(hemoglobin)으로 차 있다. 적혈구의 직경은 1/100 mm 도 안되는 작은 세포이지만, 놀랍게도 하나의 적혈구에는 2억7천만 이라는 실로 엄청난 숫자의 헤모글로빈 분자가 들어 있다. 또한 헤모글로빈 한 분자는 약 574개의 아미노산으로 구성되어 있다. 이러한 아미노산들은 모두 질서정연하게 배열되어야 하며, 하나라도 잘못 연결이 될 경우에는 제 기능을 발휘할 수 없게 되어 있다. 따라서 적혈구 하나에는 1000 억이 넘는 아미노산들이 지극히 정교한 질서를 유지하며 배열되어 있는 것이다. 너무도 정교한 구조이기에 신의 섭리를 느낄 수 밖에 없다.

헤모글로빈 한 분자에는 4개의 헴(heme)이라는 구조가 있으며, 각각의 헴에는 철(Fe)이 한 분자씩 붙어 있는데, 각각의 철에 산소가 붙어서 운반된다. 피의 색깔이 붉게 보이는 이유도 철의 붉은 색 때문이다. 이 철 분자에 붙은 산소는 주변의 가스 농도에 따라서 산소가 붙기도 하고 떨어지기도 한다. 즉, 산소가 많고 이산화탄소가 적은 곳에는 철 분자에 산소가 붙고, 반대로 산소가 적고 이산화탄소가 많은 곳에서는 철 분자에서 산소가 떨어져 나가서 산소를 공급해 주므로 생명 유지에 아주 중요한 역할을 한다. 산소가 붙기만 하고 떨어지지 않는다면 생명현상이 절대로 이루어 질 수가 없을 텐데, 놀랍게도 주변농도에 의해 분리되기에 허파로부터 산소가 각각의 조직으로 전달될 수 있는 것이다.

적혈구의 숫자는 실로 상상을 초월할 만큼 엄청나다. 피 한 방울(약50㎕)중에 약 2억 5천만 개나 되는 적혈구가 있으며 약 5리터의 우리 몸 속의 핏속에는 무려 25조개나 되는 실로 어마어마한 적혈구가 쉴 새 없이 구석구석을 돌며 산소를 운반하고 있다. 적혈구 한 개의 크기가 10㎛라고 할 때, 우리 몸에 있는 적혈구를 모두 쌓아 올리면 약 5만㎞나 수직으로 치솟게 된다. 적혈구의 수명은 약 120일이기에 이 많은 숫자를 혈액 내에 채우기 위해서 뼈 중의 골수(bone marrow)는 1초당 무려 200만개 이상의 적혈구를 혈관 내로 뿜어내고 있다. 말이 200만개의 세포이지 그 세포 하나 하나를 만든다고 한번 생각해 보라. 말처럼 그렇게 간단한 것이 아니다.

적혈구는 일생 (120일) 동안 심장을 7만 5천 번이나 드나들게 된다. 이렇게 작은 세포들이 혈관이라는 도로를 따라서 빽빽하게 줄을 서서 끊임없이 운동하고 있고, 심장이라는 펌프를 수없이 드나들면서 120일 이라는 짧은 일생을 마감하고 한 곳에서 소멸되고, 반면에 끊임없이 만들어지고 있는 것이다. 만들어 질 때마다 그 놀라운 아미노산들을 다시금 질서정연하게 연결시켜야 한다. 이러한 과정이 우리의 생명현상을 유지시키고 있으니 창조주 하나님의 지혜가 없이는 생명현상이 있을 수가 없겠다.

또 다른 놀라운 사실이 있다. 이러한 산소를 실은 '트럭'에 해당하는 적혈구를 우리 몸의 구석구석에 갈 수 있도록 하기 위해 우리 몸은 복잡하기 이를 데 없는 혈관(blood vessel)이라고 불리우는 '고속도로망'을 구축하고 있는데, 그 길이가 장장 10만km에 달하고 있다. 그리고 말이 10만 km이지 일렬로 세우면 서울-부산 고속도로를 200회 이상이나 갈 수 있는 거리이고, 지구를 2번 반이나 돌 수 있는 거리이다. 겨우 160-170cm 키밖에 안 되는 우리의 몸 속에 10만km의 고속도로에 해당하는 혈관이 있음을 한번 상상해 보자. 그리고 그 길을 끊임없이 달리고 있을 25조 대의 산소 운반'트럭'을… 평생 셈해도 셀 수 없는 숫자이다. 이 산소 운반 트럭이 단 몇 분만이라도 조직세포에 공급되지 않으면 우리 생명은 치명타를 입게 된다.

그런데 우리 몸 속의 이 혈관이라는 고속도로도 사실은 그렇게 간단한 구조가 아니다 가장 안쪽에 상피 세포(endothelium), 그 바깥쪽에 탄력 섬유, 근육들이 복잡하게 여러 층으로 깔려 있고 가장 좁은 길인 모세혈관(capillary) 도 상피 세포 아래에 기저막(basement membrane)으로 깔려 있는데, 사실 이 기저막만 해도 전자 현미경으로 보면 여러 층의 섬유로 구성되어 있는 첨단 설계의 구조로 되어 있다. 서울 부산의 고속도로를 가만히 두었는데 오랜 세월이 지나다 보니 저절로 생겼다고 이야기하면 도대체 말이나 될 이야기인가? 누가 믿을 수 있을까! 일류 토목 공학자들을 비롯한 많은 사람들의 지혜와 설계가 없다면 도저히 이루어질 수 없다는 것은 자명한 일이다. 여하튼 우리 몸은 처음에는 어머니 뱃속에서 단 한 개의 세포로 출발한다. 한 개의 세포가 100조가 넘는 세포로 이루어진 몸을 이루어 나가는 것이다. 그 속에 10만 km가 넘는 이 혈관 공사가 저절로 되었다는 것은 도저히 믿을 수 없는 일이다.

이러한 혈관 내의 각종 세포와 물질들이 원활히 우리 몸을 구석구석 순환하도록 심장은 또한 끊임없이 박동하고 있다. 심장의 박동은 너무도 고맙게도 중추신경계의 지배를 거의 받지 않고 스스로 움직일 수 있도록 되어 있다. 심장의 발생 시, 약1%의 심장근 세포(cardiac muscle cell)로서의 역할을 하며, 이 후 생명이 끝나는 날까지 한 번도 멈추지 않고 움직인다. 신경이나 호르몬은 심장의 박동 속도를 단지 조금 조절할 뿐이다. 아무리 마음을 먹어도 심장을 멈출 수 없고, 잠을 자면서 잊어버려도 심장은 계속해서 뛰고 있다. 심장은 1분 간에 약 72회 박동하며 1회 약 70ml의 혈액을 방출하고, 1분에 약 5리터(70×72회)를 방출한다. 즉 1분이면 전체혈액의 양이 심장을 통과하는 양이 되며 하루 동안만 해도 10만 번을 박동 하면서 4000리터 (슈퍼마켓에서 구입할 수 있는 가장 큰 콜라 병이 1.5리터)의 실로 어마어마한 혈액을 방출한다. 사람이 75세까지 산다고 가정할 때 사람의 주먹 크기만한 심장은 28억 번이나 박동 하면서 280만l의 혈액을 펌프질 한다. 아무리 강한 쇳덩어리라 하더라도 28억 번의 박동을 한다면 견딜 수가 없다. 우리는 강철보다 훨씬 강하고 힘있는 우리의 주먹만한 주머니를 왼쪽 가슴에 담고 살고 있는 것이다. 그리고 심장은 피의 역류를 막기 위해서 정교한 각종 판막(valve)들을 갖고 있는 완벽한 설계의 모습을 보여준다. 당신의 일생 동안에 심장이 하는 일의 양을 한번 상상해 보라!

혈액응고(blood clotting)도 잠시 한번 살펴보자. 고무호스로 자동차를 세차할 때나 화단에 뿌릴 때 호스에 구멍이 생기면 물이 새어나오는데 물은 결코 응고되지 않고 계속 새어나온다. 우리 혈액이 만약 그렇다면 우린 아마 조그만 상처에도 출혈로 인한 생명의 위협을 느낄 것이지만, 혈액은 물과는 완전히 다르게 되어 있다. 혈액의 응고는 적어도 12개의 응고 인자(blood clotting factors)를 요구하는 복잡하고도 정교한 과정을 거쳐야만 한다. 이 중 하나의 인자에라도 이상이 생기면 혈우병의 원인이 된다. 외부의 적들과 싸우는 백혈구에 이상이 생기면 백혈병이 되어 목숨을 잃게 되는 것만 봐도, 피 속의 하나하나의 요소들이 생명 현상에 얼마나 중요한 역할을 담당하고 있는지를 알 수가 있다. 우리의 핏속에는 우리의 생명을 유지시키기 위해 실로 놀랍고도 신비스러운 과정들이 매초 매분마다 일어나고 있다.

우리가 숨을 쉬고 있다는 그 자체가 기적인 것 같다. 팔이나 다리는 우리의 의지대로 마음대로 움직일 수 있지만, 숨을 끝까지 쉬지 않고 의지적으로 멈출 수 없는 것은 자율 신경계에 의해서 조정 받고 있기 때문이다. 어린애가 엄마에게 사탕을 주지 않으면 숨을 쉬지 않고 죽겠다고 해도 전혀 두려워할 필요가 없다.

사람과 동물은 소화와 흡수로 얻은 영양분을 각 조직 세포로 공급하고, 이물질 등을 산화시킴으로써 생명 활동에 필요한 에너지를 얻고 있는데, 흡수된 영양 물질을 태우는 산화 과정에서 산소는 절대적이다. 그런데 사람과 동물은 체내에 산소를 저장할 수 없기 때문에 외부 환경으로부터 끊임없이 산소를 공급받아야 하고, 또한 산화의 결과로 생성된 탄산가스를 체외로 배출하는 기체 교환을 해야 한다. 호흡의 과정은 매우 복잡하지만 간단히 표현하면, 우리 몸이 활동하기 위해 필요한 에너지 대사 과정에 산소(O2)를 공급하고 이산화탄소(CO2)를 몸 밖으로 배출하는 활동이다. 이 과정을 우리는 호흡이라고 하고 폐는 바로 호흡운동을 하는 호흡기관이라 할 수 있다. 산소와 이산화탄소의 교환이 이루어지고 있는 곳은 누구나 잘 알듯이 허파(lung)인데, 숨을 들이쉬는 곳에서 허파까지는 코(nose), 후두(throat), 기관(windpipe), 기관지, 세 기관지 등의 관으로 연결되어 있다.

사람의 호흡기관을 먼저 살펴보자. 폐는 좌우 한 쌍으로 갈비뼈 안쪽 흉강 속에 다소곳이 자리하고 있다. 길이는 약 25cm, 무게는 약 1kg 정도이다. 위에서 언급한 기관(windpipe, 공기가 들어가는 관)은 수많은 가지로 나누어지고 또 나누어지고 하면서 결국 미세한 가지들은 허파꽈리(alvioli)라는 산소와 이산화탄소의 교환이 직접적으로 일어나는 구조와 연결이 된다. 직경 0.1-0.2 mm 정도인 폐포는 성인의 경우 한쪽 폐에 약 3억 개나 되며 많은 주름이 접혀진 상피 세포들로서 폐의 내부 면적을 최대한으로 넓혀 공기와 접촉을 크게 한다. 또한 그 둘레를 모세혈관이 치밀하게 둘러싸서 산소와 탄산가스 교환이 효과적으로 이루어지도록 설계되어 있다. 허파의 전체 표면적은 피부 면적의 약 50배, 즉 핸드볼 구장만큼의 넓은 표면적을 갖고 있다. 좁은 공간에서 이렇게 큰 면적을 확보할 수 있도록 되어 있다는 자체가 경이롭다. 허파꽈리는 쉽게 포도송이의 포도알 하나하나라고 생각하고, 이 포도송이에 연결된 큰 가지부터 작은 가지들을 공기가 들어가는 관(pipe)으로 생각하면 된다. 다시 쉽게 설명하면 수많은 포도송이처럼 생긴 허파꽈리가 큰 통에 꽉 차 있다고 생각하면 된다. 허파꽈리를 둘러싸고 있는 혈관의 길이를 다 합치면 얼마나 될까? 약 1000km나 되는 방대한 길이로 모세혈관들이 허파 속의 하나하나의 허파꽈리 주변을 빽빽히 둘러싸고 있다.

정상 호흡을 할 경우 사람은 1분간 15-18회의 호흡운동을 하게 되며, 1회에 출입하는 공기의 양인 호흡 용량은 약 5백cc정도이다. 폐가 최대로 심호흡을 할 때 성인의 경우 호흡량은 약 4천cc에 달한다. 이것을 보통 폐활량이라고 부르는데 폐활량은 신장, 연령, 성별에 따라 상당한 차이가 있을 뿐만 아니라 활동 상태에 따라서도 달라진다. 호흡운동은 뇌의 연수에 있는 호흡중추에 의하여 반사적으로 조절되는데, 이곳엔 탄산가스 농도 변화에 민감하게 반응하는 세포들이 있어서 혈액 속에 녹아 있는 탄산가스의 양이 증가하면 호흡중추의 흥분이 커지며, 따라서 호흡 횟수가 증가해 산소를 많이 흡수하게 된다.

사람의 멋진 허파구조에 비해 양서류나 파충류는 허파가 통처럼 되어 있는 구조 속에 격벽이 쳐져 있다. 즉 사람(포유류)에서처럼 허파꽈리 구조를 갖고 있지 않아 이산화탄소와 산소의 교환이 이루어질 수 있는 표면적이 극히 감소되어 있어 급격히 호흡률이 떨어진다.

하지만 이러한 정교하고 아름다운 사람의 호흡기관도 어류나 조류에 비하면 아무것도 아니라고 할 수 있다. 왜냐하면 호흡 시에 산소가 허파 쪽으로 들어오는 길과 이산화탄소가 외부로 배출 될 때 같은 통로(windpipe)를 사용하고 있지 않다는 점이다. 즉 코에서 허파꽈리까지가 양방향성(two way)이라는 것인데, 이것으로 인해 통로 내에 언제나 사용된 공기가 남아 있게끔 되어 있다.

만약 산소가 들어가는 길과 이산화탄소가 나오는 길이 틀리다면 어떻게 될까? 이것은 허파에 늘 새로운 공기(fresh air)를 공급하기 때문에 호흡률을 높임으로써 몸에 더 많은 산소를 공급할 수 있고, 따라서 활발한 대사 활동을 해주게 한다. 이러한 (포유류와는 완전히 다른) system을 갖고 있는 것이 조류와 어류이다. 먼저, 새는 몸 속에 기낭(air sac)이라는 공기 주머니를 갖고 있는데 (보통 5-9개), 이 기낭들은 크게 전기낭과 후기낭으로 나누어진다. 새가 공기를 들이쉴 때(inspire)에 공기는 먼저 후기낭으로 들어간 후 내쉴 때(expire) 전기낭으로 왔다가 다음에 기관을 통해서 빠져나간다. 이 전체 과정은 2개의 과정으로 이루어져 있다. 이렇게 함으로써 조류는 놀랍게도 허파에서 공기의 흐름을 일 방향(one way)으로 흐르게 하는데, 결과적으로 사람에서와는 달리 허파에 늘 이산화탄소와 섞이지 않은 새로운 공기를 제공한다. 다음으로 전기낭과 후기낭 사이에 놓여 있는 허파의 구조가 사람과는 판이하게 되어 있다. 조류의 허파는 부 기관(parabronchi)이라는 아주 미세한 수많은 관으로 되어 있다. 이 부 기관 사이로 공기가 일 방향으로 끊임없이 흐르고, 이 부 기관 둘레에 혈관들이 공기가 흐르는 반대방향 (이것을 counter-current flow라고 한다.)으로 배열되어 있어 공기 중의 산소의 확산을 크게 증가시켜 준다. 이 원리는 간단하다. 공기 중의 산소와 핏 속의 이산화탄소의 교환은 각각의 압력 차에 의한 확산에 의해서 이루어지는데, 만약 공기와 피가 같은 방향으로 흐른다면 공기에서 핏속으로 확산되어진 산소가 핏속에 50%에 달하게 되면 공기 중에 남아 있는 50%의 산소는 더 이상 확산 할 수 없게 되어 이용되지 못하는 산소가 된다.

그러나 공기와 피가 반대 방향으로 흐르게 되면 항상 기관 내의 산소 압력이 핏 속의 산소압력보다 높아서 기관과 핏줄이 만나는 전 부위에서 산소의 확산이 이루어지게 되어 있어 공기 중의 대부분의 산소가 지속적으로 확산되어지게 된다. 이러한 일 방향 공기흐름 및 역 방향 피흐름의 구조를 갖고 있는 조류는 그야말로 완전한 호흡계를 갖고 있다고 할 수 있다. 이러한 이유로 인해 참새는 6000m 상공에서도 호흡에 지장이 없이 날수 있지만, 생쥐(포유류)는 충분한 산소의 확산이 이루어지지 못하기에 날지 못한다. 또한 새가 날 때에 많은 양의 에너지가 필요한데, 이를 위해 충분한 산소를 공급한다.

이제 어류를 한번 살펴보자. 물고기는 사람처럼 허파꽈리의 구조도 새처럼 부 기관도 갖고 있지 않다. 그러나 그들 나름대로의 특이한 호흡기관인 아가미를 갖는데, 어류도 조류와 마찬가지로 일 방향 공기(물)흐름과 역 방향 피 흐름 구조를 갖고 있다. 물은 입으로 들어와 아기미로 빠져나간다. 그림에서 보듯이 이 아가미는 멋지고 아름다운 미세한 층판구조(lamella)로 이루어져 있는데, 산소를 함유한 물은 항상 핏줄이 지나가는 층판 사이로 피가 흐르는 반대 방향으로 흐름으로써, 조류에서와 마찬가지로 물 속의 산소의 확산을 크게 증대시킨다.

고기는 이렇게 함으로써 산소의 확산을 85%까지 이루는 것으로 알려져 있다. 이 얼마나 완벽한 설계인가? 물고기가 아무리 멋진 모습의 아가미를 갖고 있다고 하더라도 물을 떠나서는 살 수가 없다. 비록 공기 중의 산소가 물 속의 산소보다 많다 할지라도 공기는 물처럼 부력이 없기에 아가미를 펼 수도 없고 아가미를 이루는 쇄사(gill filament) 들은 곧 말라 서로 달라붙게 되어 더 이상 살 수가 없게 된다.

지금까지 사람(포유류), 조류, 어류에서 살펴보았듯이 모든 호흡 기관들은 각 종류의 생활 방식에 너무나 아름답게 설계되어져 있다. 이들 각각은 호흡 기관들 (사람은 허파꽈리, 조류는 부 기관, 어류는 아가미) 은 아무런 유사성도 없이 각각 완전히 다른 설계 구조 속에 디자인되어 있다. 각종 물고기들은 그 환경에 맞는 아가미라는 호흡기관을, 하늘을 나는 각종 새들은 하늘을 나는 데 적합한 다른 멋진 모습의 호흡기관을, 우리 사람들은 땅에서 살기에 조금도 지장이 없는 모습으로 모든 기관들을, 최고의 걸작품으로 설계되어 있다. 아무리 살펴보아도 아가미에서 사람의 허파까지 진화를 보여주는 점진적인 변이란 찾아볼 수가 없다.


전창진 (창조과학회)   

 

http://www.biblenara.org/